# CS 188: Artificial Intelligence Spring 2010 

Lecture 9: MDPs<br>2/16/2010

Pieter Abbeel - UC Berkeley
Many slides adapted from Dan Klein

## Announcements

- Assignments
- P2 due Thursday
- We reserved Soda 271 on Wednesday Feb 17 from 4 to 6 . One of the GSI's will periodically drop in to see if he can provide any clarifications/assistance. It's a great opportunity to meet other students who might still be looking for a partner.
$\qquad$
- Readings:
- For MDPs / reinforcement learning, we're using an online reading
- Different treatment and notation than the R\&N book, beware!
- Lecture version is the standard for this class


## Example: Insurance

- Consider the lottery [0.5,\$1000; 0.5,\$0]
- What is its expected monetary value (EMV)? (\$500)
$\rightarrow$ What is its certainty equivalent?
- Monetary value acceptable in lieu of lottery
- \$400 for most people
- Difference of $\$ 100$ is the insurance premium
- There's an insurance industry because people will pay to reduce their risk
- If everyone were risk-neutral, no insurance needed!


## Example: Insurance

- Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties' expected utility

You own a car. Your lottery:
$\rightarrow L_{Y}=[0.8, \$ 0 ; 0.2,-\$ 200]$
i.e., $20 \%$ chance of crashing
$\leadsto$ You do not want -\$200!

$U_{Y}\left(L_{Y}\right)=0.2^{*} U_{Y}(-\$ 200)=-200$
$U_{Y}(-\$ 50)=-150$

## Example: Insurance

- Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties' expected utility

You own a car. Your lottery: | Insurance company buys risk:
$\mathrm{L}_{Y}=$ [0.8, \$0; 0.2, -\$200]
i.e., $20 \%$ chance of crashing

You do not want -\$200!
$U_{Y}\left(L_{Y}\right)=0.2 * U_{Y}(-\$ 200)=-200$
$U_{Y}(-\$ 50)=-150$
$L_{\perp}=[0.8, \$ 50 ; 0.2,-\$ 150] a-$
i.e., $\$ 50$ revenue + your $L_{Y}$

Insurer is risk-neutral:
$\mathrm{U}(\mathrm{L})=\underline{\mathrm{U}}(\underline{\mathrm{EMV}(\mathrm{L}))}$
$U_{I}\left(L_{I}\right)=U\left(0.8^{*} 50+0.2^{*}(-150)\right)$
$=U(\$ 10)>U(\$ 0)$

## Example: Human Rationality?

- Famous example of Allais (1953) \&
- A: [0.8,\$4k; 0.2,\$0] 5 \&
- B: [1.0,\$3k; 0.0,\$0] 230
© C: $[0.2, \$ 4 \mathrm{k} ; 0.8, \$ 0] \geq 30$
- D: [0.25,\$3k; 0.75,\$0] 4
- Most people prefer B > A, C > D $\leftarrow$
- But if $\mathrm{U}(\$ 0)=0$, then
$\rightarrow B>A \Rightarrow U(\$ 3 k)>0.8 \cup(\$ 4 k)$
- $\mathrm{C}>\mathrm{D} \Rightarrow 0.2 \mathrm{U}(\$ 4 \mathrm{k})>0.25 \mathrm{U}(\$ 3 \mathrm{k})$ equivalently: $0.8 \mathrm{U}(\$ 4 \mathrm{k})>\mathrm{U}(\$ 3 \mathrm{k})$



## Reinforcement Learning

- Basic idea:
- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must learn to act so as to maximize expected rewards $\leftarrow-$



## Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
- $80 \%$ of the time, the action North takes the agent North (if there is no wall there)
- $10 \%$ of the time, North takes the agent West; 10\% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards

3

2

1


## Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$ a
- A set of actions $a \in A$ a
- A transition function T(s,a,s')
- Prob that a from s leads to s'
- i.e., $\mathrm{P}\left(\mathrm{s}^{\prime} \mid \mathrm{s}, \mathrm{a}\right)$
- Also called the model
- A reward function $R\left(s, a, s^{\prime}\right)$
- Sometimes just R(s) or R(s')
- A start state (or distribution) \&
- Maybe a terminal state
- MDPs are a family of nondeterministic search problems
- Reinforcement learning: MDPs where we don't know the transition or reward functions



## What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means:

$P\left(\underset{S_{t+1}=s^{\prime}}{\bigodot} \mid S_{t}=s_{t}, A_{t}=a_{t}, S_{t-1}=s_{t-1}, A_{t-1}, \ldots S_{0}=s_{0}\right)$
$P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}\right)$


## Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy $\boldsymbol{\pi}^{*}: S \rightarrow A$
- A policy $\pi$ gives an action for each state
- An optimal policy maximizes expected utility if followed
- Defines a reflex agent

Optimal policy when $R\left(s, a, s^{\prime}\right)=-0.03$ for all non-terminals s


## Example Optimal Policies



## Example: High-Low

- Three card types: 2, 3, 4
- Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, you say "high" or "low"
- New card is flipped
- If you're right, you win the points shown on the new card
- Ties are no-ops
- If you're wrong, game ends

- Differences from expectimax:
- \#1: get rewards as you go
- \#2: you might play forever!


## High-Low as an MDP

- States: 2, 3, 4, done
- Actions: High, Low
- Model: T(s, a, s'):
- $P\left(s^{\prime}=4 \mid 4\right.$, Low $)=1 / 4$
- $P\left(s^{\prime}=3 \mid 4\right.$, Low $)=1 / 4$
- $P\left(s^{\prime}=2 \mid 4\right.$, Low $)=1 / 2$
- $\mathrm{P}\left(\mathrm{s}^{\prime}=\right.$ done $\mid 4$, Low $)=0$
- $P\left(s^{\prime}=4 \mid 4\right.$, High $)=1 / 4$
- $P\left(s^{\prime}=3 \mid 4\right.$, High $)=0$
- $P\left(s^{\prime}=2 \mid 4\right.$, High $)=0$
- $\mathrm{P}\left(\mathrm{s}^{\prime}=\right.$ done $\mid 4$, High $)=3 / 4$
- ...

- Rewards: R(s, a, s'):

- 0 otherwise 4
- Start: 3



## MDP Search Trees

- Each MDP state gives an expectimax-like search tree



## Utilities of Sequences

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards
- Typically consider stationary preferences:

- Theorem: only two ways to define stationary utilities
- Additive utility:

$$
\begin{aligned}
& U\left(\left[r_{0}, r_{1}, r_{2}, \ldots\right]\right)=r_{0}+r_{1}+r_{2}+\cdots \quad \sum_{i=0}^{\infty} \gamma^{i}=\frac{1}{1-\gamma} \\
& \text { scounted utility: } \\
& U\left(\left[r_{0}, r_{1}, r_{2}, \ldots\right]\right)=r_{0}+\gamma r_{1}+\gamma^{2} r_{2} \ldots \quad \text { \& } \quad \gamma^{<1}
\end{aligned}
$$

- Discounted utility:


## Infinite Utilities?!

- Problem: infinite state sequences have infinite rewards
- Solutions:
- Finite horizon:
- Terminate episodes after a fixed T steps (e.g. life)

- Gives nonstationary policies ( $\pi$ depends on time left)
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "done" for High-Low)
- Discounting: for $0<\gamma<1$

$$
U\left(\left[r_{0}, \ldots r_{\infty}\right]\right)=\sum_{t=0}^{\infty} \gamma^{t} r_{t} \leq R_{\max } /(1-\gamma)
$$

- Smaller $\gamma$ means smaller "horizon" - shorter term focus


## Discounting

- Typically discount rewards by $\gamma<1$ each time step
- Sooner rewards have higher utility than later rewards
- Also helps the algorithms converge



## Recap: Defining MDPs

- Markov decision processes:
- States S
- Start state $\mathrm{s}_{0}$
- Actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount $\gamma$ )

- MDP quantities so far:
- Policy = Choice of action for each state
- Utility (or return) = sum of discounted rewards


## Optimal Utilities

- Fundamental operation: compute the values (optimal expectimax utilities) of states s
- Why? Optimal values define optimal policies!
- Define the value of a state s: $\checkmark V^{*}(s)=$ expected utility starting in $s$ and acting optimally



## The Bellman Equations

- Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:

Optimal rewards = maximize over first action and then follow optimal policy


- Formally:

$$
\begin{aligned}
V^{*}(s) & =\max _{a} Q^{*}(s, a) \\
Q^{*}(s, a) & =\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \\
V^{*}(s) & =\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

## Solving MDPs

- We want to find the optimal policy $\pi^{*}$
- Proposal 1: modified expectimax search, starting from each state s:
$\pi^{*}(s)=\arg \max _{a} Q^{*}(s, a)$
$Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$
$V^{*}(s)=\max _{a} Q^{*}(s, a)$



## Why Not Search Trees?

- Why not solve with expectimax?
- Problems:
- This tree is usually infinite (why?)
- Same states appear over and over (why?)
- We would search once per state (why?)
- Idea: Value iteration
- Compute optimal values for all states all at once using successive approximations
- Will be a bottom-up dynamic program similar in cost to memoization
- Do all planning offline, no replanning needed!



## Value Estimates

- Calculate estimates $\mathrm{V}_{\mathrm{k}}{ }^{*}(\mathrm{~s})$
- Not the optimal value of $s$ !
- The optimal value considering only next $k$ time steps ( $k$ rewards)

- As $\mathrm{k} \rightarrow \infty$, it approaches the optimal value
- Why:
- If discounting, distant rewards become negligible
- If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
- Otherwise, can get infinite expected utility and then this approach actually won't work

