CS 188: Artificial Intelligence Spring 2010

Lecture 9: MDPs 2/16/2010

Pieter Abbeel – UC Berkeley

Many slides adapted from Dan Klein

Announcements

- Assignments
 - P2 due Thursday
- 1
- We reserved Soda 271 on Wednesday Feb 17 from 4 to 6. One of the GSI's will periodically drop in to see if he can provide any clarifications/assistance. It's a great opportunity to meet other students who might still be looking for a partner.
- Readings:
 - For MDPs / reinforcement learning, we're using an online reading
 - Different treatment and notation than the R&N book, beware!
 - Lecture version is the standard for this class

Example: Insurance

- Consider the lottery [0.5,\$1000; 0.5,\$0]
 - What is its expected monetary value (EMV)? (\$500)
 - → What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - \$400 for most people
 - Difference of \$100 is the insurance premium
 - There's an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance needed!

3

Example: Insurance

- Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties' expected utility
- You own a car. Your lottery: $L_Y = [0.8, \$0; 0.2, -\$200]$ i.e., 20% chance of crashing
- → You do not want -\$200!

$$U_Y(L_Y) = 0.2*U_Y(-\$200) = -200$$

 $U_Y(-\$50) = -150$

Amount	Your Utility U _Y	ď
\$0	0	4
-\$50	-150	9-
-\$200	-1000	4

Example: Insurance

 Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties' expected utility

```
You own a car. Your lottery: L_{Y} = [0.8, \$0 ; 0.2, -\$200] i.e., 20% chance of crashing L_{L} = [0.8, \$50 ; 0.2, -\$150] i.e., $50 revenue + your L_{Y} i.e., $50 revenue + your L_{Y} Insurer is risk-neutral: U_{Y}(L_{Y}) = 0.2^{*}U_{Y}(-\$200) = -200 U_{Y}(-\$50) = -150 U_{I}(L_{I}) = U(0.8^{*}50 + 0.2^{*}(-150)) = U(\$10) > U(\$0)
```

Example: Human Rationality?

 C > D ⇒ 0.2 U(\$4k) > 0.25 U(\$3k) equivalently: 0.8 U(\$4k) > U(\$3k)

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must learn to act so as to maximize expected rewards

Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards

What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means:

$$P(\underline{S_{t+1} = s'} | S_{\underline{t}} = \underline{s_t}, \underline{A_t = a_t}, \underline{S_{t-1} = s_{t-1}}, \underline{A_{t-1}}, \dots \underline{S_0 = s_0})$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal
- - A policy π gives an action for each state
 - An optimal policy maximizes expected utility if followed
 - Defines a reflex agent

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Example: High-Low

- Three card types: 2, 3, 4
- Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, you say "high" or "low"
- New card is flipped
- If you're right, you win the points shown on the new card
- Ties are no-ops
- If you're wrong, game ends
- Differences from expectimax:
 - #1: get rewards as you go
 - #2: you might play forever!

16

High-Low as an MDP

- States: 2, 3, 4, done
- Actions: High, Low
- Model: T(s, a, s'):
 - $P(s'=4 \mid 4, Low) = 1/4$
 - $P(s'=3 \mid 4, Low) = 1/4$
 - $P(s'=2 \mid 4, Low) = 1/2$
 - P(s'=done | 4, Low) = 0
 - P(s'=4 | 4, High) = 1/4
 - $P(s'=3 \mid 4, High) = 0$
 - $P(s'=2 \mid 4, High) = 0$
 - P(s'=done | 4, High) = 3/4
 - ..
- Rewards: R(s, a, s'):
 - Number shown on \underline{s} if $\underline{s} \neq \underline{s}$ and \underline{a} is "correct"
 - 0 otherwise 4-
- Start: 3

Utilities of Sequences

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards
- Typically consider stationary preferences:

- Theorem: only two ways to define stationary utilities
 - Additive utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

Discounted utility:

$$U([r_0, r_1, r_2, \dots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \dots$$

Infinite Utilities?!

Problem: infinite state sequences have infinite rewards

- Solutions:
 - Finite horizon:

- Terminate episodes after a fixed T steps (e.g. life)
- Gives nonstationary policies (π depends on time left)
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "done" for High-Low)
- Discounting: for $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

Smaller γ means smaller "horizon" – shorter term focus

Discounting

- Typically discount rewards by γ < 1 each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge

22

Recap: Defining MDPs

- Markov decision processes:
 - States S
 - Start state s₀
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a.s'))
 - Rewards R(s,a,s') (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility (or return) = sum of discounted rewards

Optimal Utilities

- Fundamental operation: compute the values (optimal expectimax utilities) of states s
- Why? Optimal values define optimal policies!
- Define the value of a state s:
 \(\frac{V'(s)}{a}\) = expected utility starting in s and acting optimally
- Define the value of a q-state (s,a):

 O'(s,a) = expected utility starting in s, taking action a and thereafter acting optimally
- Define the optimal policy:
 π'(s) = optimal action from state s

The Bellman Equations

 Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:

Optimal rewards = maximize over first action and then follow optimal policy

Formally:

$$\begin{split} V^*(s) &= \max_{a} Q^*(s, a) \\ Q^*(s, a) &= \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \\ V^*(s) &= \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \end{split}$$

Solving MDPs

- We want to find the optimal policy π^*
- Proposal 1: modified expectimax search, starting from each state s:

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_{a} Q^*(s, a)$$

27

Why Not Search Trees?

- Why not solve with expectimax?
- Problems:
 - This tree is usually infinite (why?)
 - Same states appear over and over (why?)
 - We would search once per state (why?)
- Idea: Value iteration
 - Compute optimal values for all states all at once using successive approximations
 - Will be a bottom-up dynamic program similar in cost to memoization
 - Do all planning offline, no replanning needed!

Value Estimates

- Calculate estimates V_k*(s)
 Not the optimal value of s!

 - The optimal value considering only next k time steps (k rewards)
 - As $k \to \infty$, it approaches the optimal value
 - Why:
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and then this approach actually won't work

